Monitoring and Guiding Pupils' Problem Solving
نویسندگان
چکیده
منابع مشابه
Assessing Low-attaining Pupils in Arithmetic Word Problem Solving
This paper describes a standing alone computer based assessing system called ASSA (Adaptive System for Student Assessment), able also to be a part of a larger intelligent tutoring system. It is designed to support the assessment of pupils of age 8-12 who show a very low performance in solving simple arithmetic word problems. The main aim of the system is to tackle the lowattaining student’s abi...
متن کاملEye movements and problem solving: guiding attention guides thought.
Overt visual attention during diagram-based problem solving, as measured by eye movements, has been used in numerous studies to reveal critical aspects of the problem-solving process that traditional measures like solution time and accuracy cannot address. In Experiment 1, we used this methodology to show that particular fixation patterns correlate with success in solving the tumor-and-lasers r...
متن کاملMonitoring the Progress of Anytime Problem-Solving
Anytime algorithms offer a tradeoff between solution quality and computation time that has proved useful in applying artificial intelligence techniques to time-critical problems. To exploit this tradeoff, a system must be able to determine the best time to stop deliberation and act on the currently available solution. When the rate of improvement of solution quality is uncertain, monitoring the...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولNoticing relevant problem features: activating prior knowledge affects problem solving by guiding encoding
This study investigated whether activating elements of prior knowledge can influence how problem solvers encode and solve simple mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + __). Past work has shown that such problems are difficult for elementary school students (McNeil and Alibali, 2000). One possible reason is that children's experiences in math classes may encourage them to think...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Magistra Iadertina
سال: 2018
ISSN: 1846-3606
DOI: 10.15291/magistra.1493